Currently, aluminum alloy is widely used in an automotive structure such as bus body materials due to decreasing the structure weight and fuel consumption. In this structure, there are tens or even hundreds of joints to meet the engineering design. Because of its advantages, the adhesive joint is usually chosen. Aluminum is stiff enough, but it can deform easily. Due to its deformability, cracks will occur easily on the aluminum adhesive joint if it is joined using strong and stiff adhesive. Otherwise, it will be very weak if it is joined using flexible adhesive. The mixture of the strong adhesive, epoxy (EP) and the ductile adhesive, silyl modified polymer (SMP) was proposed for joining aluminum. This study aims to evaluate the effect of the composition of mixed adhesive and its thickness on the strength of single lap joint (SLJ) etched aluminum. Before joining process, the aluminum surface was treated by sandpapering (SDP), and then chromic-sulphuric acid (CSA) etch. The composition variations of mixed adhesive were 100%EP, 75%SMP:25%EP, 50%SMP:50%EP, 25%SMP:75%EP, and 100%SMP. Mixed adhesives were prepared by using a stirrer with a spatula for 4-6 minutes at 60 rpm. SLJ specimens were manufactured through bonding of two aluminum sheets surface with an adhesive and giving 0.1 MPa pressure. The thickness adhesive was varied of 0.2 mm, 0.4 mm, and 0.6 mm. Specimens got a post-curing process at 100oC for 100 minutes. The shear tests were performed to evaluate the strength of SLJ. The experimental result showed that the surface treatments of SDP and CSA give higher porosity on the adherend surface. The highest strength and elasticity modulus were achieved by joint of 25%SMP:75%EP mixed adhesive joints. The addition a few of SMP adhesive in EP adhesive and adherend surface treatment increases the joint strength. All of the joints have mixed failure mode except the 100%EP adhesive joint has an adhesive failure mode.
Read full abstract