ABSTRACTBordetella pertussis, Bordetella bronchiseptica, and Bordetella parapertussis share highly homologous virulence factors and commonly cause respiratory infections in mammals; however, their host specificities and disease severities differ, and the reasons for this remain largely unknown. Adenylate cyclase toxin (CyaA) is a homologous virulence factor that is thought to play crucial roles in Bordetella infections. We herein demonstrate that CyaAs function as virulence factors differently between B. bronchiseptica/B. parapertussis and B. pertussis. B. bronchiseptica CyaA bound to target cells, and its enzyme domain was translocated into the cytosol similarly to B. pertussis CyaA. The hemolytic activity of B. bronchiseptica CyaA on sheep erythrocytes was also preserved. However, in nucleated target cells, B. bronchiseptica CyaA was phosphorylated at Ser375, which constitutes a motif (RSXpSXP [pS is phosphoserine]) recognized by the host factor 14-3-3, resulting in the abrogation of adenylate cyclase activity. Consequently, the cytotoxic effects of B. bronchiseptica CyaA based on its enzyme activity were markedly attenuated. B. parapertussis CyaA carries the 14-3-3 motif, indicating that its intracellular enzyme activity is abrogated similarly to B. bronchiseptica CyaA; however, B. pertussis CyaA has Phe375 instead of Ser, and thus, was not affected by 14-3-3. In addition, B. pertussis CyaA impaired the barrier function of epithelial cells, whereas B. bronchiseptica CyaA did not. Rat infection experiments suggested that functional differences in CyaA are related to differences in pathogenicity between B. bronchiseptica/B. parapertussis and B. pertussis.