Abstract

Inhibition of Bordetella pertussis adenylate cyclase toxin (ACT) and Bacillus anthracis edema factor (EF), key virulence factors with adenylate cyclase activity, represents a potential method for treating or preventing toxemia related to whooping cough and anthrax, respectively. Novel α-branched acyclic nucleoside phosphonates (ANPs) having a hemiaminal ether moiety were synthesized as potential inhibitors of bacterial adenylate cyclases. ANPs prepared as bisamidates were not cytotoxic, but did not exhibit any profound activity (IC50 >10 μm) toward ACT in J774A.1 macrophages. The apparent lack of activity of the bisamidates is speculated to be due to the inefficient formation of the biologically active species (ANPpp) in the cells. Conversely, two 5-haloanthraniloyl-substituted ANPs in the form of diphosphates were shown to be potent ACT and EF inhibitors with IC50 values ranging from 55 to 362 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.