Renal injury might originate from multiple factors like ischemia reperfusion (I/R), drug toxicity, cystic fibrosis, radio contrast agent etc. The four adenosine receptor subtypes have been identified and found to show diverse physiological and pathological roles in kidney diseases. The activation of A1 adenosine receptor (A1) protects against acute kidney injury by improving renal hemodynamic alterations, decreasing tubular necrosis and its inhibition might facilitate removal of toxin or drug metabolite in chronic kidney disease models. Furthermore, recent findings revealed that A2A receptor subtype activation regulates macrophage phenotype in experimental models of nephritis. Interestingly the emerging role of adenosine kinase inhibitors in kidney diseases has been discussed which act by increasing adenosine availability at target sites and thereby promote A2A receptor stimulation. In addition, the least explored adenosine receptor subtype A3 inhibition was observed to exert anti- oxidant, immunosuppressive and anti-fibrotic effects, but more studies are required to confirm its benefits in other renal injury models. The clinical studies targeting A1 receptor in patients with pre-existing kidney disease have yielded disappointing results, perhaps owing to the origin of unexpected neurological complications during the course of trial. Importantly, conducting well designed clinical trials and testing adenosine modulators with lesser brain penetrability could clear the way for clinical approval of these agents for patients with renal functional impairments.