Post-polymerization modification (PPM) is a valuable strategy for achieving diversified functional polymers; nonetheless, the pursuit of achieving mild and efficient dual modification along the polymeric backbone remains as a challenge. In this work, the Michael addition reaction of acetoacetates and acrylates have been demonstrated as a robust PPM technique. The reversible addition-fragmentation chain transfer polymerization of commercially available 2-(acetoacetoxy)ethyl methacrylate provides a polymer scaffold with controlled molecular weight and acetoacetate groups. These pendant groups are capable of undergoing efficient double addition reactions with acrylates, leading to an increased density of functional moieties within the polymeric backbone. This PPM reaction exhibits unique advantages such as mild reaction conditions (at 40 °C), rapid kinetics (completion within 1 h), and high atom economy. Consequently, a series of polymers with tunable thermal stability, glass transition temperature, and hydrophilicity have been successfully synthesized. Applications have been demonstrated for both the synthesis of polymers exhibiting aggregation-induced luminescence and the preparation of luminescent materials with adjustable mechanical properties. This pioneering work unveils a robust post-polymerization modification technique, significantly advancing the synthesis of innovative functional polymers.
Read full abstract