The ability to discriminate between talkers assists listeners in understanding speech in a multitalker environment. This ability has been shown to be influenced by sensory processing of vocal acoustic cues, such as fundamental frequency (F0) and formant frequencies that reflect the listener's vocal tract length (VTL), and by cognitive processes, such as attention and memory. It is, therefore, suggested that children who exhibit immature sensory and/or cognitive processing will demonstrate poor voice discrimination (VD) compared with young adults. Moreover, greater difficulties in VD may be associated with spectral degradation as in children with cochlear implants. The aim of this study was as follows: (1) to assess the use of F0 cues, VTL cues, and the combination of both cues for VD in normal-hearing (NH) school-age children and to compare their performance with that of NH adults; (2) to assess the influence of spectral degradation by means of vocoded speech on the use of F0 and VTL cues for VD in NH children; and (3) to assess the contribution of attention, working memory, and nonverbal reasoning to performance. Forty-one children, 8 to 11 years of age, were tested with nonvocoded stimuli. Twenty-one of them were also tested with eight-channel, noise-vocoded stimuli. Twenty-one young adults (18 to 35 years) were tested for comparison. A three-interval, three-alternative forced-choice paradigm with an adaptive tracking procedure was used to estimate the difference limens (DLs) for VD when F0, VTL, and F0 + VTL were manipulated separately. Auditory memory, visual attention, and nonverbal reasoning were assessed for all participants. (a) Children' F0 and VTL discrimination abilities were comparable to those of adults, suggesting that most school-age children utilize both cues effectively for VD. (b) Children's VD was associated with trail making test scores that assessed visual attention abilities and speed of processing, possibly reflecting their need to recruit cognitive resources for the task. (c) Best DLs were achieved for the combined (F0 + VTL) manipulation for both children and adults, suggesting that children at this age are already capable of integrating spectral and temporal cues. (d) Both children and adults found the VTL manipulations more beneficial for VD compared with the F0 manipulations, suggesting that formant frequencies are more reliable for identifying a specific speaker than F0. (e) Poorer DLs were achieved with the vocoded stimuli, though the children maintained similar thresholds and pattern of performance among manipulations as the adults. The present study is the first to assess the contribution of F0, VTL, and the combined F0 + VTL to the discrimination of speakers in school-age children. The findings support the notion that many NH school-age children have effective spectral and temporal coding mechanisms that allow sufficient VD, even in the presence of spectrally degraded information. These results may challenge the notion that immature sensory processing underlies poor listening abilities in children, further implying that other processing mechanisms contribute to their difficulties to understand speech in a multitalker environment. These outcomes may also provide insight into VD processes of children under listening conditions that are similar to cochlear implant users.
Read full abstract