With the development of the electric power industry, the technical level of automatic testing equipment for the reliability of electrical component circuit breakers in the transmission and distribution network is getting higher and higher. The stability and accuracy of the test power supply are the basis for ensuring the pass rate of the test product. Most of the electrical testing and testing equipment has defects such as inaccurate power supply current regulation, low power, and low level of intelligence, which are difficult to meet the testing requirements. Based on the theory of a closed-loop control system, this paper adopts embedded system design technology to realize a high-current, high-power, high-stability digital constant current source system for line detection. This paper studies the rule-based intelligent anti-jamming decision engine design and system anti-jamming performance analysis of NC-OFDM system. We give the design of an intelligent anti-jamming decision engine based on rule-based decision-making, and focus on two intelligent anti-jamming decision-making algorithms: Adaptive Modulation and Coding (AMC) algorithm based on signal-to-noise ratio difference and packet error rate and Adaptive Sub-Band Selection (ASBS) algorithm. Experimental test results show that the output current range is 200 mA to 2000 mA, the system has realized a microstep adjustment of±5 mA, and the absolute error of current measurement is less than 0.3%+4 mA. The system is stable and reliable, and has high practical value in the field of high precision and low power.