This paper presents a novel adaptive probabilistic algorithm to identify damage characteristics by integrating the use of the frequency response function with an optimization approach. The proposed algorithm evaluates the probability of damage existence and determines salient details such as damage location and damage severity in a probabilistic manner. A multistage sequence is used to determine the probability of damage parameters including crack depth and crack location while minimizing uncertainties. A simply supported beam with an open edge crack was used to demonstrate the application of the algorithm for damage detection. The robustness of the algorithm was tested by incorporating varying levels of noise into the frequency response. All simulation results show successful detection of damage with a relatively high probability even in the presence of noise. Results indicate that the probabilistic algorithm could have significant advantages over conventional deterministic methods since it has the ability to avoid yielding false negatives that are quite common among deterministic damage detection techniques.
Read full abstract