Looking back on the development of metamaterials in the past 20 years, metamaterials have gradually developed from three-dimensional complex electromagnetic structures to a two-dimensional metasurface with a low profile, during which a series of subversive achievements have been produced. The form of electromagnetic manipulation of the metasurface has evolved from passive to active tunable, programmable, and other dynamic and real-time controllable forms. In particular, the proposal of coding and programmable metasurfaces endows metasurfaces with new vitality. By describing metamaterials through binary code, the digital world and the physical world are connected, and the research of metasurfaces also steps into a new era of digitalization. However, the function switch of traditional programmable metamaterials cannot be achieved without human instruction and control. In order to achieve richer and more flexible function regulation and even higher level metasurface design, the intelligence of metamaterials is an important direction in its future development. In this paper, we review the development of tunable, programmable, and intelligent metasurfaces over the past 5 years, focusing on basic concepts, working principles, design methods, manufacturing, and experimental validation. Firstly, several manipulation modes of tunable metasurfaces are discussed; in particular, the metasurfaces based on temperature control, mechanical control, and electrical control are described in detail. It is demonstrated that the amplitude and phase responses can be flexibly manipulated by the tunable metasurfaces. Then, the concept, working principle, and design method of digital coding metasurfaces are briefly introduced. At the same time, we introduce the active programmable metasurfaces from the following aspects, such as structure, coding method, and three-dimensional far-field results, to show the excellent electromagnetic manipulation ability of programmable metasurfaces. Finally, the basic concepts and research status of intelligent metasurfaces are discussed in detail. Different from the previous programmable metamaterials, which must be controlled by human intervention, the new intelligent metamaterials control system will realize autonomous perception, autonomous decision-making, and even adaptive functional manipulation to a certain extent.