Atmospheric moisture transport is pivotal in regulating water resources over the Tibetan Plateau (TP). With the growing concerns about climate change, understanding the evolution of atmospheric moisture transport over the TP has become increasingly critical. however, the spatiotemporal distinctions of this transport remain poorly understood in the CMIP6 models. Here, we conducted a comprehensive evaluation of simulated historical atmospheric moisture transport from 33 CMIP6 models, utilizing a novel methodology that assesses the accuracy of model simulations in replicating regional atmospheric moisture transport over the TP. Our results indicate that the CMIP6 models generally succeed in reproducing the broad spatial patterns of atmospheric moisture transport. Nonetheless, substantial errors occur during the monsoon period, primarily attributable to inaccuracies in the location, movement, and intensity of the simulated Indian summer monsoon. The coarser resolution and poor representation of physical processes are potential reasons for errors in atmospheric moisture transport simulation over the TP. The Failure to simulate the terrain blocking on atmospheric moisture transport exacerbates these deficiencies, leading to significant discrepancies. Of the 33 CMIP6 models we investigated, over one-third displayed serious deficiencies in this regard. While coarser resolution and orographic gravity waves are plausible factors, they do not fully account for all the results obtained in this study. Insufficiently detailed or inaccurate topographic data used in the models may also contribute to this deficiency. This study highlights the necessity of using rigorously evaluated models to develop effective regional adaptation strategies over the Tibetan Plateau.