BackgroundPatients suffering from severe acute respiratory distress syndrome (ARDS) face limited therapeutic options and alarmingly high mortality rates. Refractory hypoxemia, a hallmark of ARDS, often necessitates invasive and high-risk treatments. Oxygen microbubbles (OMB) present a promising approach for extrapulmonary oxygenation, potentially augmenting systemic oxygen levels without exposing patients to significant risks. MethodsRats with severe, acute hypoxemia secondary to wood smoke inhalation (SI) received intraperitoneal (IP) bolus injections of escalating weight-by-volume (BW/V) OMB doses or normal saline to determine optimal dosage and treatment efficacy. Subsequently, a 10 % BW/V OMB bolus or saline was administered to a group of SI rats and a control group of healthy rats (SHAM). Imaging, vital signs, and laboratory studies were compared at baseline, post-smoke inhalation, and post-treatment. Histological examination and lung tissue wet/dry weight ratios were assessed at study conclusion. ResultsTreatment with various OMB doses in SI-induced acute hypoxemia revealed that a 10 % BW/V OMB dose significantly augmented systemic oxygen levels while minimizing dose volume. The second set of studies demonstrated a significant increase in partial pressure of arterial oxygen (PaO2) and normalization of heart rate with OMB treatment in the SI group compared to saline treatment or control group treatment. ConclusionsThis study highlights the successful augmentation of systemic oxygenation following OMB treatment in a small animal model of severe hypoxemia. OMB therapy emerges as a novel and promising treatment modality with immense translational potential for oxygenation support in acute care settings.
Read full abstract