Successful cardiac resynchronization therapy (CRT) shortens the pre-ejection period (PEP) which is prolonged in the left bundle branch block (LBBB). In a combined animal and patient study, we investigated if changes in the pulse arrival time (PAT) could be used to measure acute changes in PEP during CRT implantation and hence be used to evaluate acute CRT response non-invasively and in real time. In six canines, a pulse transducer was attached to a lower limb and PAT was measured together with left ventricular (LV) pressure by micromanometer at baseline, after induction of LBBB and during biventricular pacing. Time-to-peak LV dP/dt (Td) was used as a surrogate for PEP. In twelve LBBB patients during implantation of CRT, LV and femoral pressures were measured at baseline and during five different pacing configurations. PAT increased from baseline (277 ± 9 ms) to LBBB (313 ± 16 ms, P < 0.05) and shortened with biventricular pacing (290 ± 16 ms, P < 0.05) in animals. There was a strong relationship between changes in PAT and Td in patients (r2 = 0.91). Two patients were classified as non-responders at 6 months follow-up. CRT decreased PAT from 320 ± 41 to 298 ± 39 ms (P < 0.05) in the responders, while PAT increased by 5 and 8 ms in the two non-responders. This proof-of-concept study indicates that PAT can be used as a simple, non-invasive method to assess the acute effects of CRT in real time with the potential to identify long-term response in patients.
Read full abstract