Abstract

BackgroundElectrocardiographic mapping (ECM) expresses electrical substrate through magnitude and direction of the activation delay vector (ADV). We investigated to what extent the response to cardiac resynchronization therapy (CRT) is determined by baseline ADV and by ADV modification through CRT and optimization of left ventricular (LV) pacing site. MethodsECM was performed in 79 heart failure patients (4 RBBB, 12 QRS < 120 ms, 23 non-specific conduction delay [NICD] and 40 left bundle branch block [LBBB]). 67 patients (QRS ≥ 120 ms) underwent CRT implantation and in 26 patients multiple LV pacing site optimization was performed. ADV was calculated from locations/depolarization times of 2000 virtual epicardial electrodes derived from ECM. Acute response was defined as ≥10% LVdP/dtmax increase, chronic response by composite clinical score at 6 months. ResultsDuring intrinsic conduction, ADV direction was similar in patients with QRS < 120 ms, NICD and LBBB, pointing towards the LV free wall, while ADV magnitude was larger in LBBB (117 ± 25 ms) than in NICD (70 ± 29 ms, P < 0.05) and QRS < 120 ms (52 ± 14 ms, P < 0.05). Intrinsic ADV accurately predicted the acute (AUC = 0.93) and chronic (AUC = 0.90) response to CRT. ADV change by CRT only moderately predicted response (highest AUC = 0.76). LV pacing site optimization had limited effects: +3 ± 4% LVdP/dtmax when compared to conventional basolateral LV pacing. ConclusionThe baseline electrical substrate, adequately measured by ADV amplitude, strongly determines acute and chronic CRT response, while the extent of its modification by conventional CRT or by varying LV pacing sites has limited effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call