Background: Heavy metals (HMs) such as Cr, Hg, Pb, etc., are major threats to human health due to their toxic and carcinogenic properties. So, the determination of HMs concentrations in waters is an actual and important task. Methods: In this paper, the method includes a preliminary concentration of HMs and other analytes (Ag, Au, Ba, Be, Bi, Cr, Hg, In, Pb, Sn, and Zn) from water solutions on the graphene oxide and subsequent analysis of slurries of sorbent by electrothermal vaporization inductively coupled plasma optical emission spectrometry (ETV-ICP-OES) is developed for the first time. Results: The high efficiency of analytes sorption on graphene oxide made it possible to significantly increase the sensitivity of the analysis. The limits of detection of Ag, Au, Ba, Be, Bi, Cr, Hg, In, Pb, Sn, and Zn from 0.7 to 300 ng L-1 are achieved for ETV-ICP-OES analysis. The use of electrothermal vaporization for sample introduction allows the analysis of sorbent suspensions and avoids the desorption stage, reduces sample dilution, increases the preconcentration factor, and improves limits of detection (LODs) of analytes by 2-33 times compared to routine inductively coupled plasma optical emission spectrometry analysis (ICP-OES) with sorption preconcentration. Conclusion: For Ba, Be, Bi, Cr, In, Pb, Sn, and Zn ETV-ICP-OES provides LODs from 2 to 33 times lower compared to conventional ICP-OES analysis with sorption preconcentration due to higher preconcentration factor and transport efficiency of introducing of the analytes concentrates into the ICP. The developed method was applied to the analysis of real tap and mineral water samples. The results of analysis by ETV-ICP-OES with preconcentration of trace elements and ICP-OES were in good agreement. As a result of lower LODs of analytes, ETV-ICP-OES analysis provides the determination of concentrations of Ba, Bi, Sn, and Pb in tap and mineral water samples.
Read full abstract