Background: Accurate reconstruction and quantification in the post-therapy SPECT/CT imaging of 166Ho microspheres for hepatic malignancies is crucial for treatment evaluation. This present study aimed to explore the impact of the OSEM reconstruction parameters on SPECT/CT image features for dose distribution determination, using Hybrid Recon™ (Hermes Medical Solutions AB) and full Monte Carlo (MC) collimator modeling. Methods: Image quality and activity quantification were assessed through two acquisitions of the Jaszczak phantom using a Siemens Symbia Intevo Bold SPECT/CT system. The datasets were reconstructed using the OSEM method, with variations in the number of iterations for 15 and 8 subsets, both with and without full MC collimator modeling. Contrast recovery coefficient (QH), coefficient of variation (CV), contrast-to-noise ratio (CNR), calibration factor (CF), and activity recovery coefficient (ARC) were calculated and used to evaluate image quality and activity quantification. Results: Reconstructions with 5 iterations and 15 subsets, as well as 10 iterations and 8 subsets, were selected as the most suitable for 166Ho imaging, as they provided higher QH and ARCs. Incorporating full MC collimator modeling in both reconstructions led to significant improvements in image quality and activity recovery. The CFs remained consistent for a fixed value of 15 and 8 subsets, with values of (14.9 ± 0.5) cps/MBq and (14.6 ± 0.5) cps/MBq, respectively. However, when applying full collimator modeling, the CF values decreased to a range between 10.9 and 12.1 cps/MBq. Conclusions: For 166Ho SPECT/CT imaging, OSEM (with either 5 iterations and 15 subsets or 10 iterations and 8 subsets) combined with full MC collimator modeling yielded superior image quality and quantification results.
Read full abstract