Monascus pigments (MPs) and monacolin K (MK) are important secondary metabolites produced by Monascus spp. This study aimed to investigate the effect of soybean protein isolate (SPI) on the biosynthesis of MPs and MK based on the analysis of physiological indicators, transcriptomes, and metabolomes. The results indicated that the growth, yellow MPs, and MK production of Monascus pilosus MS-1 were significantly enhanced by SPI, which were 8.20, 8.01, and 1.91 times higher than that of the control, respectively. The utilization of a nitrogen source, protease activity, the production and utilization of soluble protein, polypeptides, and free amino acids were also promoted by SPI. The transcriptomic analysis revealed that the genes mokA, mokB, mokC, mokD, mokE, mokI, and mokH which are involved in MK biosynthesis were significantly up-regulated by SPI. Moreover, the glycolysis/gluconeogenesis, pyruvate metabolism, fatty acid degradation, tricarboxylic acid (TCA) cycle, and amino acid metabolism were effectively up-regulated by SPI. The metabolomic analysis indicated that metabolisms of amino acid, lipid, pyruvate, TCA cycle, glycolysis/gluconeogenesis, starch and sucrose, and pentose phosphate pathway were significantly disturbed by SPI. Thus, MPs and MK production promoted by SPI were mainly attributed to the increased biomass, up-regulated gene expression level, and more precursors and energies.