Abstract
Botrytis cinerea causes gray mold, decreasing the quality of table grapes. The berry response to B. cinerea infection was explored in present study, focusing on the relationship between presence of autophagy and programmed cell death (PCD). Results demonstrated B. cinerea infection decreased cell viability, triggering cell death, possibly resulting in PCD occurrence. It was further verified by increased terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive nuclei, heightened caspase 3-like and caspase 9-like protease activity, and elevated expression of metacaspase genes. Additionally, autophagy was indicated by the increased VvATG expression and autophagosome formation. Notably, the autophagy activator rapamycin reduced TUNEL-positive nuclei, whereas the autophagy inhibitor 3-methyladenine increased caspase 9-like protease activity. The PCD activator C2-ceramide inhibited autophagy, whereas the PCD inhibitor Acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO) enhanced autophagy gene expression. Autophagy and B. cinerea-induced PCD in berry cells are reciprocally negatively regulated; and the rapamycin and Ac-DEVD-CHO could potentially maintain table grape edible quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.