The development of fuel cells and metal-air batteries is an important link in realizing a sustainable energy supply and a green environment for the future. Oxygen reduction reaction (ORR) is the core reaction of such energy conversion devices. M-N-C catalysts exhibit encouraging ORR catalytic activity and are the most promising candidates for replacing Pt/C. The electrocatalytic performance of M-N-C catalysts is intimately related to the specific metal species and the coordination environment of the central metal atom. Axial coordination engineering presents an avenue for the development of highly active ORR catalysts and has seen considerable progress over the past decade. Nevertheless, the accurate control over the coordination environment and electronic structure of M-N-C catalysts at the atomic scale poses a big challenge. Herein, the diverse axial ligands, characterization techniques, and modulation mechanisms for axial coordination engineering are encompassed and discussed. Furthermore, some pressing matters to be solved and challenges that deserve to be explored and investigated in the future for axial coordination engineering are proposed.