A hallmark of brain organization is the integration of primary and modulatory pathways by principal neurons. Primary sensory inputs are usually not plastic, while modulatory inputs converging to the same principal neuron can be plastic. However, the mechanisms determining this input-specific expression of synaptic plasticity remain unknown. We investigated this problem in the dorsal cochlear nucleus (DCN), where principal cells integrate primary auditory nerve input with plastic, parallel fiber input. Our previous DCN studies have shown that parallel fiber inputs exhibit short- and long-term plasticities mediated by endocannabinoid signaling. Here we show that auditory nerve inputs to principal cells do not show short- or long-term endocannabinoid-mediated synaptic plasticity. Electrophysiological and electron microscopy studies indicate that input specificity arises from selective expression of presynaptic cannabinoid (CB1) receptors in parallel fiber terminals, but not in auditory nerve terminals. However, pairing of parallel fiber activity with auditory nerve activity elicits plasticity in parallel fiber inputs, thus suggesting a role for synaptic plasticity in multisensory integration.
Read full abstract