Abstract

Genetically encoded fluorescent calcium indicator proteins provide the potential to monitor activity from genetically specified target cells without a need for single cell resolution. Here we report the use of transgenic mice expressing the fluorescent calcium indicator protein GCaMP2 in cerebellar granule cells to image parallel fiber activity transcranially in vivo. We demonstrated reliable measurements of calcium transients from beams of parallel fibers in response to electrical stimulation in the molecular layer through the intact skull. These parallel fiber calcium transients differed from intrinsic postsynaptic autofluorescence signals in their faster kinetics and resistance to blockers of synaptic transmission. Finally, we used 2P laser-scanning microscopy to demonstrate reliable measurements of calcium transients from beams of parallel fibers at high spatial resolution in living mice. We expect that genetically targeted fluorescent calcium indicator proteins along with optical imaging techniques will be instrumental for the construction of macroscopic and microscopic maps of the function of specific brain circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.