The interferon-inducible double-stranded RNA (dsRNA)-activated protein kinase PKR is regulated by dsRNAs that interact with the two dsRNA-binding motifs (dsRBMs) in its N terminus. The dsRBM is a conserved protein motif found in many proteins from most organisms. In this study, we investigated the biochemical functions and cytological activities of the two PKR dsRBMs (dsRBM1 and dsRBM2) and the cooperation between them. We found that dsRBM1 has a higher affinity for binding to dsRNA than dsRBM2. In addition, dsRBM1 has RNA-annealing activity that is not displayed by dsRBM2. Both dsRBMs have an intrinsic ability to dimerize (dsRBM2) or multimerize (dsRBM1). Binding to dsRNA inhibits oligomerization of dsRBM1 but not dsRBM2 and strongly inhibits the dimerization of the intact PKR N terminus (p20) containing both dsRBMs. dsRBM1, like p20, activates reporter gene expression in transfection assays, and it plays a determinative role in localizing PKR to the nucleolus and cytoplasm of the cell. Thus, dsRBM2 has weak or no activity in dsRNA binding, stimulation of gene expression, and PKR localization, but it strongly enhances these functions of dsRBM1 when contained in p20. However, dsRBM2 does not enhance the annealing activity of dsRBM1. This study shows that the dsRBMs of PKR possess distinct properties and that some, but not all, of the functions of the enzyme depend on cooperation between the two motifs.
Read full abstract