This study’s primary goal is to use computer vision and ultra-wideband (UWB) localisation techniques to automatically mark numerals in cow photos. In order to accomplish this, we created a UWB-based cow localisation system that involves installing tags on cow heads and placing several base stations throughout the farm. The system can determine the distance between each base station and the cow using wireless communication technology, which allows it to determine the cow’s current location coordinates. The study employed a neural network to train and optimise the ranging data gathered in the 1–20 m range in order to solve the issue of significant ranging errors in conventional UWB positioning systems. The experimental data indicates that the UWB positioning system’s unoptimized range error has an absolute mean of 0.18 m and a standard deviation of 0.047. However, when using a neural network-trained model, the ranging error is much decreased, with an absolute mean of 0.038 m and a standard deviation of 0.0079. The average root mean square error (RMSE) of the positioning coordinates is decreased to 0.043 m following the positioning computation utilising the optimised range data, greatly increasing the positioning accuracy. This study used the conventional camera shooting method for image acquisition. Following image acquisition, the system extracts the cow’s coordinate information from the image using a perspective transformation method. This allows for accurate cow identification and number labelling when compared to the location coordinates. According to the trial findings, this plan, which integrates computer vision and UWB positioning technologies, achieves high-precision cow labelling and placement in the optimised system and greatly raises the degree of automation and precise management in the farming process. This technology has many potential applications, particularly in the administration and surveillance of big dairy farms, and it offers a strong technical basis for precision farming.
Read full abstract