For an electric power system (EPS) of the combined propulsion complex (CPC), working on a constant-power hyperbola (CPH), the strategy of managing power distribution between propulsion electric motors and own needs consumers has been improved. The study reported here aimed to reduce fluctuations in current consumption and load by optimizing voltage controllers and the rotation frequency of generator assemblies (GA). The system of EPS GA voltage and frequency stabilization was synthesized by determining, in the system of equations, the dynamics of the values of EPS links' time constants and the coefficients that correspond to control parameters. To define the characteristics of the control signals from the regulators of EPS GA rotation frequency and excitation voltage, the laws that control the speed and excitation current were calculated. After sampling the coefficients of the GA speed control regulator, the tasks for the excitation voltage controller were determined. The methodology of data acquisition was applied on the basis of a correlation between the EPS characteristics and the experimental characteristics of GA. The system of EPS dynamics equations was optimized in accordance with the structure and settings of the optimal controller and the probability of a situational error by using Spearman's rank correlation coefficient. The optimization has made it possible to reduce the likelihood of a situational error during the synchronization of GA and enable the stable operation of GA close to the mode of operation on CPH. The power controller was tested under the mode of changing the load of own needs with the power levels of EPS on CPH in the range of 50‒100 % of the rated power. The range of deviations of the current consumed with an enabled GA rotation controller was 10 % of the average value. The range of EPS power deviations with the power controller turned on was 5 %.