We have calculated the phonon spectra of aluminum as a function of strain using density functional perturbation theory for <110>, <100>, and <111> uniaxial tension, as well as relaxed <112>[111] shear. In all four cases, phonon instabilities occur at points away from the center of the Brillouin zone and intrude before the material becomes unstable according to elastic stability criteria. This is the first time the ideal strength of a metal has been shown to be dictated by instabilities in the acoustic phonon spectra. We go on to describe the crystallography of the unstable modes, all of which are shear in character. This work further suggests that shear failure is an inherent property of aluminum even in an initially dislocation-free perfect crystal.
Read full abstract