Tellurite glass is an amorphous material commonly doped with rare earth ions for the development of optical temperature sensors. Considering the intrinsic properties of glasses, it is expected that these sensors could be used in acidic environments and withstand temperature changes. However, this has not been fully demonstrated since most of the literature is limited to demonstrate the sensor operation under normal conditions. Additionally, there is a lack of information regarding the chemical durability of these glasses and methods to improve it. In this work, a special tellurite glass composition was proposed for the development of optical temperature sensor. The effect of the alumina concentration on the structure, chemical durability and emission properties of the glasses was evaluated. Chemical durability was assessed by monitoring the weight loss of glass samples after immersion in hydrochloric acid solutions at room temperature, vegetable oil or air at 150 °C. The results indicate that the addition of alumina increases the chemical durability of the glass and improves its emission properties. It was found that the average temperature estimated by the optical sensor had a relative error of 1.3 % due to the degradation of the glass caused by remaining immersed in a 1 N HCl solution for 60 days.
Read full abstract