Abstract

Fungi (Neolentinus lepideus, Nl, and Trametes versicolor, Tv) impart wood rot, leading to economic and environmental issues. To overcome this issue, toxic chemicals are commonly employed for wood preservation, impacting the environment and human health. Surface coatings based on antimicrobial chitosan (CS) of high molar mass (145 × 105 Da) were tested as wood preservation agents using an innovative strategy involving ultra-pressurizing CS solutions to deposit organic coatings on wood samples. Before coating deposition, the antifungal activity of CS in diluted acetic acid (AcOOH) solutions was evaluated against the rot fungi models Neolentinus lepideus (Nl) and Trametes versicolor (Tv). CS effectively inhibited fungal growth, particularly in solutions with concentrations equal to or higher than 0.125 mg/mL. Wood samples (Eucalyptus sp. and Pinus sp.) were then coated with CS under ultra-pressurization at 70 bar. The polymeric coating deposition on wood was confirmed through X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM) images, and water contact angle measurements. Infrared spectroscopy (FTIR) spectra of the uncoated and coated samples suggested that CS does not penetrate the bulk of the wood samples due to its high molar mass but penetrates in the surface pores, leading to its impregnation in wood samples. Coated and uncoated wood samples were exposed to fungi (Tv and Nl) for 12 weeks. In vivo testing revealed that Tv and Nl fungi did not grow on wood samples coated with CS, whereas the fungi proliferated on uncoated samples. CS of high molar mass has film-forming properties, leading to a thin hydrophobic film on the wood surface (water contact angle of 118°). This effect is mainly attributed to the high molar mass of CS and the hydrogen bonding interactions established between CS chains and cellulose. This hydrophobic film prevents water interaction, resulting in a stable coating with insignificant leaching of CS after the stability test. The CS coating can offer a sustainable strategy to prevent wood degradation, overcoming the disadvantages of toxic chemicals often used as wood preservative agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.