This study investigated the role of Al and As fate during the transformation process of ferrihydrite influenced by different pH values under oxic conditions. The results indicate that the Al doping greatly enhanced the transformation of ferrihydrite (Fh) to Al-substituted goethite at all acidic or alkaline pH values under oxic conditions by promoting the incongruent dissolution and reprecipitation reactions of Al-substituted ferrihydrite (AlFh). Under acidic conditions, the preferential dissolution of structural Fe (4.73 mg/L) from AlFh occurs, whereas under alkaline conditions, the preferential dissolution of structural Al (1.25 mg/L) takes place. In contrast, under neutral conditions, the low solubility of Fh and AlFh induces the significant particle assembly, with Fe/Al minerals primarily transforming into goethite through oriented aggregation. As predominantly remains in an adsorbed state at all pH values during the transformation of Fh and AlFh, with the highest proportion of adsorbed As (86.9-96.7%) observed under neutral conditions. During the aging process, the adsorbed As gradually transforms into non-extractable As, and the changes in As speciation within Fe/Al minerals are closely coupled with the transformation of AlFh and Fh. Under alkaline and acidic conditions, the proportion of non-extractable As in the transformation products of Fh and AlFh increases by 14.02-19.72% and 12.27-16.28%, respectively, while under neutral conditions, it increases only by 12-13.02%. Therefore, regulating soil pH can partially modify As speciation and mitigate its environmental impact by altering the mineral transformation process. The results of this study facilitate better understanding of the role of Al substitution in the transformation of Fh and the cycling of As in the environment.
Read full abstract