Abstract

Metal-organic frameworks (MOFs) are utilized as nanocarriers to enhance the efficiency of chemotherapy drugs, including cisplatin, which exhibit limitations such as side effects and resistance mechanisms. To evaluate the role of MOFs, we employed a molecular dynamics simulation, which, unlike other experiments, is cost-effective, less dangerous, and provides accurate results. Furthermore, we conducted molecular docking simulations to understand the interaction between cisplatin and MOF, as well as their internal interactions and how they bind to each other. Cisplatin and MOF molecules were parametrized using the Avogadro software and x2top command in GROMACS 5.1.2 and optimized by CP2K software; the Charmm-GUI site parametrized the cell cancer membrane. Three molecular dynamics simulations were conducted in four stages at various pHs, followed by simulated umbrella sampling. The simulations analyzed the pH responsiveness, total energy, Gibbs free energy, gyration radius, radial distribution function (RDF), solvent accessible surface area, and nanoparticles' toxicity. Results demonstrated that a neutral pH level (7.4) has greater adsorption and interaction compared to acidic pH values (6.4 and 5.4) because it displays the highest total energy (-17.1 kJ/mol), the highest RDF value (6.66), and the shortest distance (0.51 nm). Furthermore, the combination of cisplatin and MOFs displayed increased penetration compared to that of their individual forms. This study highlights the suitability of MOFs as nanocarriers and identifies the optimal pH values for desirable outcomes. Thus, it provides future studies with appropriate data to conduct their experiments in assessing MOFs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call