Crystalline and melt inclusions were studied in large (up to 2 cm across) dipyramidal quartz phenocrysts from Miocene dacites in the area of the Rosia Montana Au-Ag deposit in Romania. Data were obtained on the homogenization of fluid inclusions and the composition of crystalline inclusions and glasses in more than 40 melt inclusions, which were analyzed on a electron microprobe. The minerals identified in the crystalline inclusions are plagioclase (An 51–62), orthoclase, micas (biotite and phengite), zircon, magnetite (TiO2 = 2.8 wt %), and Fe sulfide. Two types of the melts were distinguished when studying the glasses of the melt inclusions. Type 1 of the melts is unusual in composition. The average composition of 20 inclusions is as follows (wt %): 76.1 SiO2, 0.39 TiO2, 6.23 Al2O3, 4.61 FeO, 0.09 MnO, 1.64 MgO, 3.04 CaO, 2.79 Na2O, 3.79 K2O (Na2O/K2O = 0.74), 0.07 P2O5, 0.02 Cl. The composition of type 2 of the melts is typical of acid magmas. The average of 23 inclusion analyses is (wt %) 79.3 SiO2, 0.16 TiO2, 10.27 Al2O3, 0.63 FeO, 0.08 MnO, 0.29 MgO, 1.83 CaO, 3.56 Na2O, 2.79 K2O (Na2O/K2O = 1.28), 0.08 P2O5, 0.05 Cl. The compositions of these melts significantly differ in concentrations of Ti, Al, Fe, Mg, Ca, Na, and K. The high analytical totals of the analyses (close to 100 wt %, more specifically 98.9 and 99.0 wt %, respectively) testify that the melts were generally poor in water. Two inclusions of type 1 and two inclusions of type 2 were analyzed on an ion probe, and their analyses show remarkable differences in the concentrations of certain trace elements. These concentrations (in ppm) are for the melts of types 1 and 2, respectively, as follows: 10.0 and 0.69 for Be, 29.3 and 5.7 for B, 6.4 and 1.4 for Cr, 146 and 6.9 for V, 74 and 18 for Cu, 92 and 29 for Rb, 45 and 15 for Zr, 1.7 and 0.6 for Hf, 10.3 and 2.3 for Pb, and 52 and 1.3 for U. The Th/U ratio of these two melt types are also notably different: 0.04 and 0.19 for type 1 and 2.0 and 2.9 for type 2. These data led us to conclude that the magmatic melts were derived from two different sources. Our data on the melts of type 1 testify that the magmatic chamber was contaminated with compositionally unusual crustal rocks (perhaps, sedimentary, metamorphic, or hydrothermal rocks enriched in Si, Fe, Mg, U, and some other components). This can explain the ore-forming specifics of magmatic chambers in the area.