Abstract

Planar optical waveguide layers were obtained in Z-cut LiTaO3 crystal substrates via proton exchange. Two different media were used as proton sources: benzoic acid melt and lithium hydrogensulphate vapors, controlling the thickness of the waveguides by duration and temperature of the proton exchange process and also by post-exchange annealing. The intrinsic stress caused by the penetration of the hydrogen ions into the crystal lattice was estimated by the optical integral method. The phase composition of proton-exchanged layers was analyzed based on the mode and IR-absorption spectra. An attempt to relate the level of stress to the level of proton doping has been made.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call