Flexible electronics, as a relatively new category of device, exhibit prodigious potential in many applications, especially in bio-integrated fields. It is critical to understand that thermal management of certain kinds of exothermic flexible electronics is a crucial issue, whether to avoid or to take advantage of the excessive temperature. A widely adaptable analytical method, validated by finite-element analysis and experiments, is conducted to investigate the thermal properties of exothermic flexible electronics with a heat source in complex shape or complex array layout. The main theoretical strategy to obtain the thermal field is through an integral along the complex curve source region. The results predicted by the analytical model enable accurate control of temperature and heat flow in the flexible electronics, which may help in the design and fabrication of flexible electronic devices in the future.