Abstract

Temperature stability is critical to the consistency of product quality in the injection molding process, and it is very necessary to improve the temperature control accuracy under dynamic conditions. However, due to the large time delay, strong coupling, and the dynamic characteristics existing in the system, it is not an easy task to achieve precise temperature control in the injection molding process. In this paper, a new intelligent temperature compensation control strategy for the injection molding process under dynamic conditions is proposed in order to solve two key problems in the compensation control strategy: the compensation time and compensation quantity. A data-based feedforward iterative learning control (ILC) algorithm is designed to learn the optimal compensation time. Once the optimal compensation time is learned, a deep Q-learning algorithm which combined Q-learning with an artificial neural network (ANN) is proposed to learn the optimal compensation quantity. An experimental platform is designed to validate the superiority of the proposed method. Experimental results show that the proposed method can effectively improve temperature control accuracy under dynamic conditions. Meanwhile, the product consistency has also been improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.