Abstract Ships inside the Arctic basin require high-resolution (1–5 km), near-term (days to semimonthly) forecasts for guidance on scales of interest to their operations where forecast model predictions are insufficient due to their coarse spatial and temporal resolutions. Deep learning techniques offer the capability of rapid assimilation and analysis of multiple sources of information for improved forecasting. Data from the National Oceanographic and Atmospheric Administration’s Global Forecast System, Multi-scale Ultra-high Resolution Sea Surface Temperature (MEaSUREs), and the National Snow and Ice Data Center’s Multisensor Analyzed Sea ice Extent (MASIE) were used to develop the sea ice extent deep learning forecast model, over the freeze-up periods of 2016, 2018, 2019, and 2020 in the Beaufort Sea. Sea ice extent forecasts were produced for 1–7 days in the future. The approach was novel for sea ice extent forecasting in using forecast data as model input to aid in the prediction of sea ice extent. Model accuracy was assessed against a persistence model. While the average accuracy of the persistence model dropped from 97% to 90% for forecast days 1–7, the deep learning model accuracy dropped only to 93%. A k-fold (fourfold) cross-validation study found that on all except the first day, the deep learning model, which includes a U-Net architecture with an 18-layer residual neural network (Resnet-18) backbone, does better than the persistence model. Skill scores improve the farther out in time to 0.27. The model demonstrated success in predicting changes in ice extent of significance for navigation in the Amundsen Gulf. Extensions to other Arctic seas, seasons, and sea ice parameters are under development. Significance Statement Ships traversing the Arctic require timely, accurate sea ice location information to successfully complete their transits. After testing several potential candidates, we have developed a short-term (7 day) forecast process using existing observations of ice extent and sea surface temperature, with operational forecasts of weather and oceanographic variables, and appropriate machine learning models. The process included using forecasts of atmospheric and oceanographic conditions, as a human forecaster/analyst would. The models were trained for the Beaufort Sea north of Alaska using data and forecasts from 2016 combined with 2018–20. The results showed improvement in short-term forecasts of ice locations over current methods and also demonstrated correctly predicted changes in the sea ice that are important for navigation.