Accurate retrieval of LST is crucial for understanding and mitigating the effects of urban heat islands, and ultimately addressing the broader challenge of global warming. This study emphasizes the importance of a single day satellite imageries for large-scale LST retrieval. It explores the impact of Spectral indices of the surface parameters, using machine learning algorithms to enhance accuracy. The research proposes a novel approach of capturing satellite data on a single day to reduce uncertainties in LST estimations. A case study over Chandigarh city using Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine, and Random Forest (RF) reveals RF's superior performance in LST estimations during both summer and winter seasons. All the ML models gave an R-square of above 0.8 and RF with slightly higher R-square during both summer (0.93) and winter (0.85). Building on these findings, the study extends its focus to Ranchi, demonstrating RF's robustness with impressive accuracy in capturing LST variations. The research contributes to bridging existing gaps in large-scale LST estimation methodologies, offering valuable insights for its diverse applications in understanding Earth's dynamic systems.
Read full abstract