With the rapid and stable growth of China's economy and the rapid development of urban construction, urban complexes have sprung up in major cities. The lag in urban ecological environmental protection, maintenance and construction has brought great pressure to the needs of today's urban residents in terms of life, safety, and sense of belonging. In the major cities with many high-rise buildings in contemporary China, land resources are becoming more and more scarce, and the urban ecological environment is in urgent need of recycling, and due to the blind imitation of Western culture and design mode and the neglect of my country's traditional regional culture, the urban landscape lacks interaction, resonance, and sense of belonging with citizens, and the phenomenon of landscape similarity emerges in various cities, focusing on the landscape space of urban complexes. There are also these problems. Urban residents urgently need a third space that can adjust their physical, mental, and spiritual needs. How to design an urban complex landscape that meets the aesthetic needs and humanistic needs of contemporary cities and has regional characteristics has become the first important task of my research. Folk art is an artistic treasure created by the working people in their production and life. Folk art is the embodiment of cultural regionality and the foundation of national culture. It awakens people's awareness of the importance of local culture, awakens people's sense of belonging, and is closer to the local public life. Today, the living soil and social and humanistic environment of folk art are in the process of urbanization in our country, and there is a trend of gradual disappearance of lifestyle changes. How to make the contemporary urban complex landscape an organic soil for the survival, expression, application, and development of folk art is an important task in contemporary urban landscape design. Based on optimization, related concepts such as symbols, folk art symbols, urban complexes, urban complex landscape design, etc. have been sorted out. The relevant experimental results show that the construction land accuracy of the logistic regression model based on genetic algorithm has increased from 78.0% to 85.3%. kappa increased from 74.5% to 81.2%. Research shows that the logistic regression parameter optimization method based on genetic algorithm has better simulation effect than the conventional logistic regression method and is more suitable for the situation of unbalanced data distribution and many data features in the simulation of large-scale urban land dynamic changes.