Image has become one of the important carriers of visual information because of its large amount of information, easy to spread and store, and strong sense of sense. At the same time, the quality of image is also related to the completeness and accuracy of information transmission. This research mainly discusses the superresolution reconstruction of remote sensing images based on the middle layer supervised convolutional neural network. This paper designs a convolutional neural network with middle layer supervision. There are 16 layers in total, and the seventh layer is designed as an intermediate supervision layer. At present, there are many researches on traditional superresolution reconstruction algorithms and convolutional neural networks, but there are few researches that combine the two together. Convolutional neural network can obtain the high-frequency features of the image and strengthen the detailed information; so, it is necessary to study its application in image reconstruction. This article will separately describe the current research status of image superresolution reconstruction and convolutional neural networks. The middle supervision layer defines the error function of the supervision layer, which is used to optimize the error back propagation mechanism of the convolutional neural network to improve the disappearance of the gradient of the deep convolutional neural network. The algorithm training is mainly divided into four stages: the original remote sensing image preprocessing, the remote sensing image temporal feature extraction stage, the remote sensing image spatial feature extraction stage, and the remote sensing image reconstruction output layer. The last layer of the network draws on the single-frame remote sensing image SRCNN algorithm. The output layer overlaps and adds the remote sensing images of the previous layer, averages the overlapped blocks, eliminates the block effect, and finally obtains high-resolution remote sensing images, which is also equivalent to filter operation. In order to allow users to compare the superresolution effect of remote sensing images more clearly, this paper uses the Qt5 interface library to implement the user interface of the remote sensing image superresolution software platform and uses the intermediate layer convolutional neural network and the remote sensing image superresolution reconstruction algorithm proposed in this paper. When the training epoch reaches 35 times, the network has converged. At this time, the loss function converges to 0.017, and the cumulative time is about 8 hours. This research helps to improve the visual effects of remote sensing images.
Read full abstract