The study aims at assessing the potential of graphene-based adsorbents to reduce environmental impacts of Iodinated Contrast Media Agents (ICMs). We analyze an extensive collection of ICMs. A modeling approach resting on molecular docking and Density Functional Theory simulations is employed to examine the adsorption process at the molecular level. The study also relies on a Quantitative Structure-Activity Relationship (QSAR) modeling framework to correlate molecular properties with the adsorption energy (Ead) of ICMs, thus enabling identification of the key mechanisms underpinning adsorption and of the key factors contributing to it. A collection of distinct QSAR-based models is developed upon relying on Multiple Linear Regression and a standard genetic algorithm method. Having at our disposal multiple models enables us to take into account the uncertainty associated with model formulation. Maximum Likelihood and formal model identification/discrimination criteria (such as Bayesian and/or information theoretic criteria) are then employed to complement the traditional QSAR modeling phase. This has the advantage of (a) providing a rigorous ranking of the alternative models included in the selected set and (b) quantifying the relative degree of likelihood of each of these models through a weight or posterior probability. The resulting workflow of analysis enables one to seamlessly embed DFT and QSAR studies within a theoretical framework of analysis that explicitly takes into account model and parameter uncertainty. Our results suggest that graphene-based surfaces constitute a promising adsorbent for ICMs removal, π-π stacking being the primary mechanism behind ICM adsorption. Furthermore, our findings offer valuable insights into the potential of graphene-based adsorbent materials for effectively removing ICMs from water systems. They contribute to ascertain the significance of various factors (such as, e.g., the distribution of atomic van der Waals volumes, overall molecular complexity, the presence and arrangement of Iodine atoms, and the presence of polar functional groups) on the adsorption process.