Teicoplanin has been banned in the veterinary field due to the drug resistance of antibiotics. However, teicoplanin residue from the antibiotic abuse of humans and animals poses a threat to people's health. Therefore, it is necessary to develop an efficient way for the highly accurate and reliable detection of teicoplanin from humans, food, and water. In this study, novel imprinted quantum dots of teicoplanin were prepared based on boronate affinity-based precisely controlled surface imprinting. The imprinting factor (IF) for teicoplanin was evaluated and reached a high value of 6.51. The results showed excellent sensitivity and selectivity towards teicoplanin. The relative fluorescence intensity was inversely proportional to the concentration of teicoplanin, in the range of 1.0-17 μM. And its limit of detection (LOD) was obtained as 0.714 μM. The fluorescence quenching process was mainly controlled by a static quenching mechanism via the non-radiative electron-transfer process between QDs and the five-membered cyclic boronate esters. The recoveries for the spiked urine, milk, and water samples ranged from 95.33 to 104.17%, 91.83 to 97.33, and 94.22 to 106.67%, respectively.
Read full abstract