Abstract

In recent years, overuse of antibiotics has led to emerging antibiotic-resistant strains of bacteria. Consequently, creating new, highly productive antibacterial agents is crucial. In this work, we synthesized copper-aluminum-zinc layered double hydroxide (Co-Al-Zn LDH) and modified it using adenosine triphosphate. After characterization, the enzyme-like activity of the prepared particles was evaluated. The results indicated peroxidase-mimic performance of ATP/Co-Al-Zn LDH with Km values of 0.38 mM and 1.69 mM for TMB (3,3′,5,5′-tetramethylbenzidine) and hydrogen peroxide (H2O2), respectively, which were lower than that of horseradish peroxidase. The highest peroxidase-like activity of ATP/Co-Al-Zn LDH was achieved at 20 °C, pH 4, with a 1.02 mg/mL catalyst, 231 μM TMB, and 1.9 mM H2O2. The bactericidal activity of the developed nanozyme was studied against E. coli and S. aureus. The peroxidase-mimic nanozyme decomposes H2O2 and generates free radicals to kill bacteria in vitro. The minimum inhibitory concentration (MIC) of ATP/Co-Al-Zn LDH was 15 μg/mL and 20 μg/mL for S. aureus and E. coli, respectively. The morphological characteristics of the nanozyme-treated bacterial cells showed dramatic changes in bacterial morphology. Our results revealed higher antibacterial activity of ATP/Co-Al-Zn LDH against S. aureus. Therefore, the developed nanozyme could serve as a substitute for conventional antibiotics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.