Molecular solar thermal (MOST) system is a new technology to collect, transform and store solar energy. The mechanism of photochemical reaction and component transport of molecular photoswitches in the reactor is still unclear. In this paper, a simulated theoretical framework for energy conversion rate and energy storage efficiency of solar energy collection and conversion devices based on a molecular solar thermal system was presented. The mathematical model of the photochemical reaction studied was based on an azobenzene derivative, which acted as a molecular photoswitch that can store energy by the switch of molecular structures. The microscopic parameters of reactants were obtained by quantum mechanics calculation and applied to the macroscopic energy conversion analysis of reaction processes. The theoretical framework can predict the conversion and energy storage efficiency of photoisomerization reactions, and can be used for component transport analysis, energy conversion analysis and reaction rate contribution analysis in reactors. We focused on the influence of macroscopic factors, including the flow velocity, inlet reactants concentration and reactor size on the photoisomerization energy storage process. The results of the theoretical analysis were in good agreement with those of existing laboratory equipment. The relative error of the conversion rate is only 0.71% in the photostable state, and the maximum relative error of the conversion rate is 10.99% in the whole process. In addition, in the photochemical reaction, we introduced the concept of absorbance field for the absorbance attenuation caused by the absorption of photons in the medium, so that the local material conversion, absorbance and energy conversion of this type of photochemical reaction can be more clearly understood. This simulated theoretical framework allows the study of molecules in a macroscopic setting, thereby establishing a link between practical engineering and basic chemistry, and providing guidance for the design of molecular solar thermal systems in the future.
Read full abstract