Abstract

Using metalorganic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE) and pulse Laser deposition (PLD) techniques on GaN, Silicon, Silicon Carbide and sapphire substrates, high efficiency InGaN/GaN solar cells are reported with a particular emphasis on the work and achievements made with multi-junction tandem and Nanomaterials (Quantum well (QW), Multiple Quantum Wells (MQW), and Quantum Dots (QD)). An effective method for increasing photon absorption in ultrathin cells made for the best possible photovoltaic response is the InGaN/GaN QW system. To maximize light absorption, the quantum well and barrier thicknesses and number of wells in the MQW active region must be adjusted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.