Yb3+-doped triple-layered perovskite CaLaNb3O10 micro-particles were synthesized via the solid-state reaction method. The crystal structure and morphology of the polycrystalline samples were investigated by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) measurements, respectively. The reflectance spectra, photoluminescence (PL) excitation and emission spectra, the decay curves, and the absolute quantum efficiency (QE) of the near-infrared (NIR) emission (910–1100nm) were measured. Under excitation of UV light, Yb3+-doped perovskite shows an intense NIR emission attributed to the 2F5/2→2F7/2 transitions of Yb3+ ions, which could match maximum spectral response of a Si-based solar cell. This is beneficial for its possible application in an enhancement of the photovoltaic conversion efficiency of solar energy utilization. The efficient energy transfer in Yb3+-doped CaLaNb3O10 from NbO6 groups into Yb3+ ions was confirmed by the spectra and fluorescent decay measurements. Cooperative energy transfer (CET) was supposed to be the NIR emission mechanism.