Abstract
A study was performed to investigate the experimental conditions and systematic uncertainties that need to be considered in order to precisely characterize quantum efficiency (QE). Measurements were performed on a HAWAII-2RG1.7 μm detector but the methodology of characterization is applicable to other detectors as well and may be useful in characterization of detectors used in future ground and space based surveys. For this study the detector QE as a function of illumination intensity, total integrated signal, and temperature was measured. A 3% relative systematic uncertainty on the measured QE value was achieved at wavelengths longer than 800 nm but the total uncertainty in the determination of absolute QE is dominated by the uncertainty in the conversion gain, which adds an additional 3.4% scale uncertainty. It was found that the measured detector QE depends on illumination intensity and that temperature dependence of QE can, at least in part, be attributed to reciprocity failure. Well-chosen detector bias voltages can reduce integrated signal nonlinearity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Publications of the Astronomical Society of the Pacific
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.