In quantitative modeling, there are two major aspects that decide reliability and real external predictivity of a structure–activity relationship (SAR) based on quantum chemical descriptors. First, the information encoded in employed molecular descriptors, computed through a quantum-mechanical method, should be precisely estimated. The accuracy of the quantum-mechanical method, however, is dependent upon the amount of electron-correlation it incorporates. Second, the real external predictivity of a developed quantitative SAR (QSAR) should be validated employing an external prediction set. In this work, to analyze the role of electron-correlation, QSAR models are developed for a set of 51 ubiquitous pollutants, namely, nitrated monocyclic and polycyclic aromatic hydrocarbons (nitrated-AHs and PAHs) having mutagenic activity in TA100 strain of Salmonella typhimurium. The quality of the models, through state-of-the-art external validation procedures employing an external prediction set, is compared to the best models known in the literature for mutagenicity. The molecular descriptors whose electron-correlation contribution is analyzed include total energy, energy of HOMO and LUMO, and commonly employed electron-density based descriptors such as chemical hardness, chemical softness, absolute electronegativity and electrophilicity index. The electron-correlation based QSARs are also compared with those developed using quantum-mechanical descriptors computed with advanced semi-empirical (SE) methods such as PM6, PM7, RM1, and ab initio methods, namely, the Hartree-Fock (HF) and the density functional theory (DFT). The models, developed using electron-correlation contribution of the quantum-mechanical descriptors, are found to be not only reliable but also satisfactorily predictive when compared to the existing robust models. The robustness of the models based on descriptors computed through advanced SE methods, is also observed to be comparable to those developed with the electron-correlation based descriptors. The work emphasizes that the correlation-energy can serve as a reliable descriptor to explore the origin of biological activities at the level of electron-dynamics.
Read full abstract