Abstract

The density functional theory (DFT) calculations were performed on benzoin (BN), benzil (BL), benzoin-(4-phenylthiosemicarbazone) (BN4PTSC) and benzil-(4-phenylthiosemicarbazone) (BL4PTSC) used as corrosion inhibitors for mild steel in acidic medium. The quantum chemical parameters/descriptors, namely, E HOMO (highest occupied molecular orbital energy), E LUMO (lowest unoccupied molecular orbital energy), the energy difference (ΔE) between E HOMO and E LUMO, dipole moment (μD), electron affinity (A), ionization potential (I), the absolute electronegativity (χ), absolute hardness (η), softness (σ), polarizability (α), the Mulliken charges, and the fraction of electrons (ΔN) transfer from inhibitors to iron, were calculated and correlated with the experimental IE%. Condensed Fukui functions have been used to determine the sites for electrophilic and nucleophilic attacks on each of the inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.