Exploring high-efficiency catalyst toward hydrogen evolution reaction (HER) for sustainable hydrogen production is critical for building a forthcoming hydrogen economy. Atomically dispersed catalysts have shown great promises for catalyzing HER yet further fine-tuning the coordination chemical environment to boost the performance is still challenging. Herein, we report the synthesis and electrocatalytic HER application of Ru single atoms dispersed in P, N co-doped porous carbon (Ru SAs@PNC). Spherical aberration corrected scanning transmission electron microscope (AC-STEM) analysis revealed the formation of atomically dispersed Ru single atoms. The as-prepared Ru SAs@PNC catalyst showed excellent HER activity in 1 M KOH, evidenced by a small overpotential of 21 mV @ 10 mA cm−2 and a low Tafel slope of 31 mV dec−1, both of which are comparable to the Pt/C benchmark catalyst. It also exhibited great durability for long-time operation, as demonstrated by negligible overpotential increase in the 50 h E-t test, and outperformed stability in the accelerated durability test. Such excellent HER performance is mainly attributed to the N, P co-doped chemical coordination environment that differs from most widely reported solely nitrogen-coordinated Ru single atoms.