Let S be a Noetherian scheme, let X be a smooth projective scheme over S, whose fibres are connected curves of genus g, and let J be the Jacobian scheme of the relative curve X over S. We generalise the theorem due to Rolph Schwarzenberger and prove that if S is integral and normal, and the structural morphism admits a section, then there exists a locally free sheaf on J, such that the relative symmetric power is isomorphic to the projective bundle over J, provided , and the ample divisor is mathrm{{Sym}}^{d-1}(X/S), embedded into by the section of the structural morphism from X to S. Then we use this result to generalise the theorem due to Shun-Ichi Kimura: if S is an integral regular scheme, separated and of finite type over a Dedekind domain, then all relative Chow motives of abelian type over S are finite-dimensional.