Abstract
We consider the 4+1 Einstein’s field equations (EFE’s) in vacuum, simplified by the assumption that there is a 4D sub-manifold on which an isometry group of dimension four acts simply transitive. In particular, we consider the Abelian group Type 4A1; and thus the emerging homogeneous sub-space is flat. Through the use of coordinate transformations that preserve the sub-manifold’s manifest homogeneity, a coordinate system is chosen in which the shift vector is zero. The resulting equations remain form invariant under the action of the constant Automorphisms group. This group is used in order to simplify the equations and obtain their complete solution space which consists of seven families corresponding to 21 distinct solutions. Apart form the Kasner type all the other solutions found are, to the best of our knowledge, new. Some of them correspond to cosmological solutions, others seem to depend on some spatial coordinate and there are also pp-wave solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.