Irradiation-induced intestinal injury (RIII) often occurs during radiotherapy in patients, which would result in abdominal pain, diarrhea, nausea, vomiting, and even death. Engelhardia roxburghiana Wall. leaves, a traditional Chinese herb, has unique anti-inflammatory, anti-tumor, antioxidant, and analgesic effects, is used to treat damp-heat diarrhea, hernia, and abdominal pain, and has the potential to protect against RIII. To explore the protective effects of the total flavonoids of Engelhardia roxburghiana Wall. leaves (TFERL) on RIII and provide some reference for the application of Engelhardia roxburghiana Wall. leaves in the field of radiation protection. The effect of TFERL on the survival rate of mice was observed after a lethal radiation dose (7.2 Gy) by ionizing radiation (IR). To better observe the protective effects of the TFERL on RIII, a mice model of RIII induced by IR (13 Gy) was established. Small intestinal crypts, villi, intestinal stem cells (ISC) and the proliferation of ISC were observed by haematoxylin and eosin (H&E) and immunohistochemistry (IHC). Quantitative real-time PCR (qRT-PCR) was used to detect the expression of genes related to intestinal integrity. Superoxide dismutase (SOD), reduced glutathione (GSH), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the serum of mice were assessed. In vitro, cell models of RIII induced by IR (2, 4, 6, 8 Gy) were established. Normal human intestinal epithelial cells HIEC-6 cells were treated with TFERL/Vehicle, and the radiation protective effect of TFERL on HIEC-6 cells was detected by clone formation assay. DNA damage was detected by comet assay and immunofluorescence assay. Reactive oxygen species (ROS), cell cycle and apoptosis rate were detected by flow cytometry. Oxidative stress, apoptosis and ferroptosis-related proteins were detected by western blot. Finally, the colony formation assay was used to detect the effect of TFERL on the radiosensitivity of colorectal cancer cells. TFERL treatment can increase the survival rate and time of the mice after a lethal radiation dose. In the mice model of RIII induced by IR, TFERL alleviated RIII by reducing intestinal crypt/villi structural damage, increasing the number and proliferation of ISC, and maintaining the integrity of the intestinal epithelium after total abdominal irradiation. Moreover, TFERL promoted the proliferation of irradiated HIEC-6 cells, and reduced radiation-induced apoptosis and DNA damage. Mechanism studies have found that TFERL promotes the expression of NRF2 and its downstream antioxidant proteins, and silencing NRF2 resulted in the loss of radioprotection by TFERL, suggesting that TFERL exerts radiation protection by activating the NRF2 pathway. Surprisingly, TFERL reduced the number of clones of colon cancer cells after irradiation, suggesting that TFERL can increase the radiosensitivity of colon cancer cells. Our data showed that TFERL inhibited oxidative stress, reduced DNA damage, reduced apoptosis and ferroptosis, and improved IR-induced RIII. This study may offer a fresh approach to using Chinese herbs for radioprotection.