BackgroundThis retrospective study aimed to characterize the distribution of HIV-1 genotypes and the prevalence of drug resistance mutations in people with antiretroviral treatment (ART) failure in Suzhou City, China.MethodsPol gene of HIV-1 viruses in blood samples of EDTA anticoagulants from 398 patients with failed antiviral treatment was successfully amplified by using an in-house assay. Drug resistance mutations were analyzed by using the Stanford HIV Drug Resistance Database system (https://hivdb.stanford.edu/hivdb/by-mutations/). HIV-1 genotypes were determined by the REGA HIV subtyping tool (version 3.46, https://www.genomedetective.com/app/typingtool/hiv). Near full-length genomes (NFLG) of HIV-1 viruses were obtained by next generation sequencing method.ResultsSequences analysis of the pol gene revealed that CRF 01_AE (57.29%, 228/398) was the dominant subtype circulating in Suzhou City, followed by CRF 07_BC (17.34%, 69/398), subtype B (7.54%, 30/398), CRF 08_BC (6.53%, 26/398), CRF 67_01B (3.02%, 12/398) and CRF55_01B (2.51%, 10/398). The overall prevalence of drug-resistant mutations in cases with ART failure was 64.57% (257/398), including 45.48% (181/398) for nucleotide reverse transcriptase inhibitors (NRTIs) mutations, 63.32% (252/398) for non-nucleoside reverse transcriptase inhibitors (NNRTIs) mutations, and 3.02% (12/398) for protease inhibitors (PIs) mutations. Ten near full-length genomes (NFLG) of HIV-1 viruses were identified, including six recombinants of CRF 01_AE and subtype B, two recombinants of CRF 01_AE, subtype B and subtype C sequences, one recombinant of CRF 01_AE and subtype C and one recombinant of CRF 01_AE, subtype A1 and subtype C.ConclusionsThe high prevalence of drug-resistant HIV-1 viruses was a serious challenge for HIV prevention and treatment of people with HIV infection. Treatment regimens for ART failure patients should be adjusted over time based on the outcome of drug resistance tests. NFLG sequencing facilitates the identification of new recombinants of HIV-1.